Filtrar por gênero

DataFramed

DataFramed

DataCamp

Welcome to DataFramed, a weekly podcast exploring how artificial intelligence and data are changing the world around us. On this show, we invite data & AI leaders at the forefront of the data revolution to share their insights and experiences into how they lead the charge in this era of AI. Whether you're a beginner looking to gain insights into a career in data & AI, a practitioner needing to stay up-to-date on the latest tools and trends, or a leader looking to transform how your organization uses data & AI, there's something here for everyone. Join co-hosts Adel Nehme and Richie Cotton as they delve into the stories and ideas that are shaping the future of data. Subscribe to the show and tune in to the latest episode on the feed below.

301 - #262 Self-Service Business Intelligence with Sameer Al-Sakran, CEO at Metabase
0:00 / 0:00
1x
  • 301 - #262 Self-Service Business Intelligence with Sameer Al-Sakran, CEO at Metabase

    We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here.

    We’re often caught chasing the dream of “self-serve” data—a place where data empowers stakeholders to answer their questions without a data expert at every turn. But what does it take to reach that point? How do you shape tools that empower teams to explore and act on data without the usual bottlenecks? And with the growing presence of natural language tools and AI, is true self-service within reach, or is there still more to the journey?

    Sameer Al-Sakran is the CEO at Metabase, a low-code self-service analytics company. Sameer has a background in both data science and data engineering so he's got a practitioner's perspective as well as executive insight. Previously, he was CTO at Expa and Blackjet, and the founder of SimpleHadoop and Adopilot.

    In the episode, Richie and Sameer explore self-serve analytics, the evolution of data tools, GenAI vs AI agents, semantic layers, the challenges of implementing self-serve analytics, the problem with data-driven culture, encouraging efficiency in data teams, the parallels between UX and data projects, exciting trends in analytics, and much more.

    Links Mentioned in the Show:

    MetabaseConnect withSameerArticles from Metabase onjargon,information budgets,analytics mistakes, anddata model mistakesCourse: Introduction to Data CultureRelated Episode: Towards Self-Service Data Engineering with Taylor Brown, Co-Founder and COO at FivetranRewatch Sessions from RADAR: Forward Edition

    New to DataCamp?

    Learn on the go using theDataCamp mobile appEmpower your business with world-class data and AI skills withDataCamp for business
    Mon, 18 Nov 2024 - 50min
  • 300 - #261 Low Code Data Science with Michael Berthold, CEO and co-founder of KNIME

    We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here.

    Data is no longer just for coders. With the rise of low-code tools, more people across organizations can access data insights without needing programming skills. But how can companies leverage these tools effectively? And what steps should they take to integrate them into existing workflows while upskilling their teams? 

    Michael Berthold is CEO and co-founder at KNIME, an open source data analytics company. He has more than 25 years of experience in data science, working in academia, most recently as a full professor at Konstanz University (Germany) and previously at University of California (Berkeley) and Carnegie Mellon, and in industry at Intel’s Neural Network Group, Utopy, and Tripos. Michael has published extensively on data analytics, machine learning, and artificial intelligence.

    In the episode, Adel and Michael explore low-code data science, the adoption of low-code data tools, the evolution of data science workflows, upskilling, low-code and code collaboration, data literacy, integration with AI and GenAI tools, the future of low-code data tools and much more. 

    Links Mentioned in the Show:

    KNIMEConnect with MichaelCode Along: Low-Code Data Science and Analytics with KNIMECourse: Introduction to KNIMERelated Episode: No-Code LLMs In Practice with Birago Jones & Karthik Dinakar, CEO & CTO at Pienso

    New to DataCamp?

    Learn on the go using theDataCamp mobile appEmpower your business with world-class data and AI skills withDataCamp for business
    Thu, 14 Nov 2024 - 33min
  • 299 - #260 Harnessing the Power of Now With Real-Time Analytics with Zuzanna Stamirowska & Hélène Stanway

    We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out more here.

    Staying ahead means knowing what’s happening right now—not minutes or hours later. Real-time analytics promises to help teams react faster, make informed choices, and even predict issues before they arise. But implementing these systems is no small feat, and it requires careful alignment between technical capabilities and business needs. How do you ensure that real-time data actually drives impact? And what should organizations consider to make sure their real-time analytics investments lead to tangible benefits?

    Zuzanna Stamirowska is the CEO of Pathway.com - the fastest data processing engine on the market which makes real-time intelligence possible. Zuzanna is also the author of the state-of-the-art forecasting model for maritime trade published by the National Academy of Sciences of the USA. While working on this project she saw that the digitization of traditional industries was slowed down by the lack of a software infrastructure capable of doing automated reasoning on top of data streams, in real time. This was the spark to launch Pathway. She holds a Master’s degree in Economics and Public Policy from Sciences Po, Ecole Polytechnique, and ENSAE, as well as a PhD in Complexity Science..

    Hélène Stanway is Independent Advisor & Consultant at HMLS Consulting Ltd. Hélène is an award-winning and highly effective insurance leader with a proven track record in emerging technologies, innovation, operations, data, change, and digital transformation. Her passion for actively combining the human element, design, and innovation alongside technology has enabled companies in the global insurance market to embrace change by achieving their desired strategic goals, improving processes, increasing efficiency, and deploying relevant tools. With a special passion for IoT and Sensor Technology, Hélène is a perpetual learner, driven to help delegates succeed. 

    In the episode, Richie, Zuzanna and Hélène explore real-time analytics, their operational impact, use-cases of real-time analytics across industries, the benefits of adopting real-time analytics, the key roles and stakeholders you need to make that happen, operational challenges, strategies for effective adoption, the real-time of the future, common pitfalls, and much more. 

    Links Mentioned in the Show:


    Pathway


    Connect with Zuzanna and HélèneLiArticle: What are digital twins and why do we need them?Course: Time Series Analysis in Power BIRelated Episode: How Real Time Data Accelerates Business Outcomes with George TrujilloSign up to RADAR: Forward Edition

    New to DataCamp?

    Learn on the go using theDataCamp mobile appEmpower your business with world-class data and AI skills withDataCamp for business
    Wed, 13 Nov 2024 - 53min
  • 298 - #259 Getting the Data For Your Data-Driven Decisions with Jonathan Bloch & Scott Voigt

    We’re improving DataFramed, and we need your help! We want to hear what you have to say about the show, and how we can make it more enjoyable for you—find out morehere.

    Understanding where the data you use comes from, how to use it responsibly, and how to maximize its value has become essential. But as data sources multiply, so do the complexities around data privacy, customization, and ownership. How can companies capture and leverage the right data to create meaningful customer experiences while respecting privacy? And as data drives more personalized interactions, what steps can businesses take to protect sensitive information and navigate the increasingly complex regulatory picture? 

    Jonathan Bloch is CEO at Exchange Data International (EDI) and a seasoned businessman with 40 years experience in information provision. He started work in the newsletter industry and ran the US subsidiary of a UK public company before joining its main board as head of its publishing division. He has been a director and/or chair of several companies and is currently a non executive director of an FCA registered investment bank. In 1994 he founded Exchange Data International (EDI) a London based financial data provider. EDI now has over 450 clients across three continents and is based in the UK, USA, India and Morocco employing 500 people.

    Scott Voigt is CEO and co-founder at Fullstory. Scott has enjoyed helping early-stage software businesses grow since the mid 90s, when he helped launch and take public nFront—one of the world's first Internet banking service providers. Prior to co-founding Fullstory, Voigt led marketing at Silverpop before the company was acquired by IBM. Previously, he worked at Noro-Moseley Partners, the Southeast's largest Venture firm, and also served as COO at Innuvo, which was acquired by Google. Scott teamed up with two former Innuvo colleagues, and the group developed the earliest iterations of Fullstory to understand how an existing product was performing. It was quickly apparent that this new platform provided the greatest value—and the rest is history.

    In the episode, Richie, Jonathan and Scott explore first-party vs third-party data, protecting corporate data, behavioral data, personalization, data sourcing strategies, platforms for storage and sourcing, data privacy, synthetic data, regulations and compliance, the future of data collection and storage, and much more. 

    Links Mentioned in the Show:

    FullstoryExchange Data InternationalConnect withJonathanandScottCourse: Understanding GDPRRelated Episode: How Data and AI are Changing Data Management with Jamie Lerner, CEO, President, and Chairman at QuantumSign up toRADAR: Forward Edition

    New to DataCamp?

    Learn on the go using theDataCamp mobile appEmpower your business with world-class data and AI skills withDataCamp for business
    Thu, 07 Nov 2024 - 45min
  • 297 - #258 Machine Learning for Ride Sharing at Lyft, with Rachita Naik, ML Engineer at Lyft

    Machine learning and AI have become essential tools for delivering real-time solutions across industries. However, as these technologies scale, they bring their own set of challenges—complexity, data drift, latency, and the constant fight between innovation and reliability. How can we deploy models that not only enhance user experiences but also keep up with changing demands? And what does it take to ensure that these solutions are built to adapt, perform, and deliver value at scale?

    Rachita Naik is a Machine Learning (ML) Engineer at Lyft, Inc., and a recent graduate of Columbia University in New York. With two years of professional experience, Rachita is dedicated to creating impactful software solutions that leverage the power of Artificial Intelligence (AI) to solve real-world problems. At Lyft, Rachita focuses on developing and deploying robust ML models to enhance the ride-hailing industry’s pickup time reliability. She thrives on the challenge of addressing ML use cases at scale in dynamic environments, which has provided her with a deep understanding of practical challenges and the expertise to overcome them. Throughout her academic and professional journey, Rachita has honed a diverse skill set in AI and software engineering and remains eager to learn about new technologies and techniques to improve the quality and effectiveness of her work. 

    In the episode, Adel and Rachita explore how machine learning is leveraged at Lyft, the primary use-cases of ML in ride-sharing, what goes into an ETA prediction pipeline, the challenges of building large scale ML systems, reinforcement learning for dynamic pricing, key skills for machine learning engineers, future trends across machine learning and generative AI and much more. 

    Links Mentioned in the Show:

    Engineering at Lyft on MediumConnect with RachitaResearch Paper—A Better Match for Drivers and Riders: Reinforcement Learning at LyftCareer Track: Machine Learning EngineerRelated Episode: Why ML Projects Fail, and How to Ensure Success with Eric Siegel, Founder of Machine Learning Week, Former Columbia Professor, and Bestselling AuthorSign up to RADAR: Forward Edition

    New to DataCamp?

    Learn on the go using theDataCamp mobile appEmpower your business with world-class data and AI skills withDataCamp for business
    Mon, 04 Nov 2024 - 36min
Mostrar mais episódios